
Digital Object Identifier (DOI) 10.1007/s100529900054
Eur. Phys. J. C 10, 639–661 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

SU(N) elastic rescattering in B and D decays

Ch. Smith
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Abstract. The treatment of elastic final-state interactions (FSIs) under a symmetry group is presented.
The proposed model is based on Watson’s theorem, i.e. on symmetry properties of the S-matrix and on
its unitarity. This theorem provides an easy way to introduce rescattering effects by defining final-state
interactions mixing matrices. A symmetry group fixes the structure of such mixing matrices, and the
passage from one group to another is studied (for example, SU(2) to SU(3)). Mixings among two charmless
pseudoscalar decay product states will be systematically analyzed. Finally, these mixing matrices will be
used on quark diagram parametrizations of B and D decay amplitudes. This will have some important
consequences on the definition of quark diagrams. It will be argued that these diagrams should not contain
any FSI effects, i.e. they should be real (except for CKM factors). FSIs are then introduced at the hadronic
level, by mixing basic quark diagram topologies.

1 Introduction

In this work, we will present a method for implement-
ing final state interactions (FSIs or rescattering), i.e. the
strong interactions between weak-decay products. These
FSIs will be treated as elastic, and special care will be
taken to define this concept. In particular, elasticity un-
der a symmetry group will be defined as a special case of a
generalized elasticity concept. This work has to be under-
stood as a first step beyond the trivial treatment of FSIs,
where FSIs are introduced as elastic under SU(2). The
decays we have in mind are the B and D decays to two
charmless pseudoscalars. In these B decays, CP violation
is expected to occur. To be able to extract the values of
the relevant parameters from experiments in order to com-
pare them to standard-model values, we must dispose of
an appropriate parametrization. Quark diagrams are usu-
ally thought to be appropriate for such a goal, but, as we
will see, these quark diagrams should be properly defined
in order to be of any use. In all this, FSIs play no funda-
mental role; they just mix up final states. Therefore, it is
necessary to treat them to reach the underlying dynamics.
The interesting point is that the model we propose to treat
elastic FSIs, based on the S-matrix and Watson’s theorem,
will point towards a specific definition of the quark dia-
grams. A lot of papers exist on this subject; some of them
are listed in the bibliography.

The decays we are considering proceed via the weak
decay of a b or c quark. We will treat the weak inter-
action at the lowest order. The strong interactions are
involved in the three following processes: they renormal-
ize the weak interaction, they confine quarks into hadrons
and they determine the asymptotic out states (FSI). Obvi-

ously, these two last manifestations of the strong interac-
tions are a priori difficult to distinguish, because the out
states can be considered as completely hadronized only
when they no longer interact. The definition of FSI will
be based on the following consideration: only hadrons, and
not quarks enter the S-matrix. Consequently, FSIs will
be defined as the (strong) interactions between hadrons.
A typical decay process like D0 → K+π− is a heavy
quark c decaying “quickly” followed by the hadroniza-
tion. This produces an intermediate real hadron state de-
noted inside accolades: for example D0 → {P1P2}. Then
these hadrons interact by the FSI towards the final state:
{P1P2} → K+π−. This picture is quite schematic and we
could say as well that we define intermediate decay am-
plitudes D0 → {P1P2} (also qualified as bare) as free of
any FSI effects. In other words, FSIs factorize from weak
bare decay amplitudes. These bare amplitudes have no
absorptive part since they must be real except for CKM
factors (equivalently, their behavior under CP is simply

CP
(
D0 → {P1P2}

)
=
(
D0 → {P1P2}

)∗
).

To summarize, the model will be based on three main
points. (1) Unitarity of the S-matrix for a given set of
rescattering channels, (2) the identification of bare am-
plitudes (elementary processes) as the part that get com-
plex conjugated under CP. These two points will then im-
ply that (3) FSI are treated as elastic among the chosen
set of rescattering channels. Usually, when adding phases
to isospin amplitudes to introduce FSI, one is implicitly
considering that the S-matrix is unitary when restricted
to a set of rescattering channels belonging to the same
isomultiplet. We will extend this to more general sets of
rescattering channels. This model can be characterized by
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the way bare amplitudes are identified. This is a hypoth-
esis, which is strictly equivalent to the general elasticity
hypothesis as soon as the S-matrix is unitary. The valid-
ity of the present approach is discussed in the conclusion.
Note that other hpropositions exist for the identification of
bare amplitudes; see for instance the K-matrix formalism,
which modelize an inelastic approach to the treatment of
FSIs.

From this picture, we will naturally introduce quark
diagrams (QDs) at the bare level. FSIs are then viewed as
mixings of these bare amplitudes. Since bare amplitudes
must be real, these QDs are defined as real. The important
point is that by defining QDs at the bare level, they are
characterized by basic topological configurations. This in
turn is very important if we are to relate these QDs to
elementary dynamical processes. Basic topologies are then
mixed by FSI. We will develop all this further in the text.

For a given final state, we cannot have arbitrary inter-
mediate states. FSIs being strong interactions, these inter-
mediate states must have the same charge, strangeness,
· · ·. Also, the available energy will determine the set of
coupled open channels for a given set of quantum num-
bers. Among these coupled states, we will only consider
two-pseudoscalar states. Thus we are neglecting transi-
tions between these PP states and many-particle states,
vector-meson states · · ·. This will be used when demon-
strating Watson’s theorem.

The approximate invariance under flavor exchange of
the strong interaction implies very severe constraints on
the decay amplitudes and on FSI. At the B or D mass,
SU(2) or SU(3) are expected not to be badly broken. As we
will see extensively, working under a symmetry group fixes
the set of coupled states, this set being bigger under SU(3)
than under SU(2). The symmetry group also fixes the
structure of the couplings of these states. These couplings
(or mixings) will be called SU(N) elastic (N = 2, 3, · · ·).
One immediate question is to find a link between a SU(2)
description and a SU(3) description of FSI, and this will
be thoroughly carried out. Phenomenologically, it is some-
times questionable to treat SU(3) mixings as elastic; one
example detailed at the end of this paper is the well-
known SU(3) prediction D0 → K0K0 = 0, which can be
lifted by an SU(3) breaking in the FSI. On the other hand
the SU(2) restriction may be too strong, since we neglect
many possible rescattering channels. An intermediate way
is proposed in this work, by distinguishing elasticity from
elasticity under a symmetry group.

Let us first recall how FSIs are usually treated when
working under a flavor symmetry group.

1.1 SU(N) analyses of B and D decays

The B and D decays we wish to describe are those into
two charmless pseudoscalars. We will work under SU(2) or
SU(3), at the lowest order in the electroweak interaction.

1.1.1 Isospin analysis

Let us analyze the decays D0 to K+π− and K0π0 under
SU(2). The well-known isospin analysis leads to the fol-
lowing parametrization of the physical decay amplitudes:


(
D0 → K+π−

)
= A3/2 + A1/2,(

D0 → K0π0
)

= 1√
2

(
2A3/2 −A1/2

) , (1)

where these isospin amplitudes correspond to AT =
〈T |HW = 1| 1/2〉 . CKM elements are not explicitly writ-
ten. These amplitudes contain the weak interaction at the
lowest order, and the whole strong interaction, including
FSI. The usual procedure to take FSI into account is to
associate phases with the isospin amplitudes by{

A3/2 = eiδ3/2A
3/2
b ,

A1/2 = eiδ1/2A
1/2
b

. (2)

We can therefore identify the bare amplitudes for these
decays:


(
D0 → {K+π−}

)
= A

3/2
b + A

1/2
b ,(

D0 → {
K0π0

})
= 1√

2

(
2A

3/2
b −A

1/2
b

) . (3)

From these bare amplitudes, we can reintroduce FSI using
a matrix procedure:

(
D0 → K+π−

)
(
D0 → K0π0

)

 = MSU(2)



(
D0 → {K+π−}

)
(
D0 → {

K0π0
})

 ,

(4)
with MSU(2) given by

MSU(2) =
1
3

(
eiδ3/2 + 2eiδ1/2

√
2
(
eiδ3/2 − eiδ1/2

)
√

2
(
eiδ3/2 − eiδ1/2

)
2eiδ3/2 + eiδ1/2

)
.

(5)
This matrix method is strictly equivalent to the usual pro-
cedure (2). However, it is now apparent that FSIs are in-
troduced as mixings between the {K+π−} and

{
K0π0

}
intermediate states.

1.1.2 SU(3) analysis

The SU(3) analyses of B and D decays into two uncharmed
pseudoscalars are given in the Appendix. Let us consider
the following set of decays:


(
D

0 → K+π−
)

=
(−4A27 + 4A8 − 2B8

)
,(

D
0 → K0π0

)
= 1√

2

(−6A27 − 4A8 + 2B8
)
,(

D
0 → K0η8

)
= 1√

6

(−6A27 − 4A8 + 2B8
)
;

(6)

again CKM elements are not written explicitly. The usual
procedure to take FSI into account in this SU(3) context
is simply{

A27 → eiδ27A27
b = A27,

X8 → eiδ8X8
b = X8 with X = A, B.

(7)

We can therefore identify bare decays as
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MSU(3) =
1
5


 2eiδ27 + 3eiδ8 3√

2

(
eiδ27 − eiδ8

) √
3
2

(
eiδ27 − eiδ8

)
3√
2

(
eiδ27 − eiδ8

)
1
2

(
7eiδ27 + 3eiδ8

)
−

√
3

2

(
eiδ27 − eiδ8

)√
3
2

(
eiδ27 − eiδ8

)
−

√
3

2

(
eiδ27 − eiδ8

)
1
2

(
9eiδ27 + eiδ8

)

 . (10)



(
B0 →

{
K+π−}) = V ∗

ubVus

(
−4A27

b − A8
b − B8

b − C8
b

)
+ V ∗

cbVcs

(
−C8c

b

)
+ V ∗

tbVts

(
−C8t

b

)
,(

B0 →
{
K0π0

})
= 1√

2

(
V ∗

ubVus

(
−6A27

b + A8
b + B8

b + C8
b

)
+ V ∗

cbVcs

(
C8c

b

)
+ V ∗

tbVts

(
C8t

b

))
,(

B0 →
{
K0η8

})
= 1√

6

(
V ∗

ubVus

(
−6A27

b + A8
b + B8

b + C8
b

)
+ V ∗

cbVcs

(
C8c

b

)
+ V ∗

tbVts

(
C8t

b

))
.

(11)




(
D

0 → {K+π−}
)

=
(−4A27

b + 4A8
b − 2B8

b

)
,(

D
0 → {

K0π0
})

= 1√
2

(−6A27
b − 4A8

b + 2B8
b

)
,(

D
0 → {

K0η8
})

= 1√
6

(−6A27
b − 4A8

b + 2B8
b

)
.

(8)

And starting with these decompositions, we can reintro-
duce FSI using a matrix procedure:

(
D0 → K+π−

)
(
D0 → K0π0

)
(
D0 → K0η8

)

 = MSU(3)



(
D0 → {K+π−}

)
(
D0 → {

K0π0
})(

D0 → {
K0η8

})

 ,

(9)
with (see (10) on top of the page).
As for SU(2), we see that FSI effects reduce to some mix-
ings among intermediate states. But a major difference
arises: under SU(3), the

{
K0η8

}
also mixes with {Kπ}

states. This mixing goes beyond SU(2) since {Kπ} states
and

{
K0η8

}
are in different SU(2) representations.

The same matrix MSU(3) can also be used to introduce
FSI in other decay decompositions into matrix elements.
For example, B0 bare decays (see (11) on top of the page).
And we can see that applying MSU(3) is equivalent to the
usual prescription (7) and C8

b → eiδ8C8
b = C8.

1.2 Questions

Having written those matrix representations for FSI, the
following questions can be addressed:
(1) What is the underlying theoretical framework? We
would like to know precisely the hypotheses concerning
this procedure. Also, the elasticity concept has to be prop-
erly defined. Finally, the properties of these M matrices
like unitarity and symmetry should be explained. This sec-
tion is based on Watson’s theorem.
(2)What are the SU(N) flavor symmetry implications? We
would like to find a systematic way to calculate mixing
matrices like MSU(2) and MSU(3). The link between these
two matrices will also be analyzed. The fact that the same
matrix can be used for different sets of reactions will be
explained.
(3)What can we say about the use of quark diagrams? We
will argue that quark diagrams should be used to para-
metrize bare decays. In other words, we will parametrize
physical decay amplitudes using FSI mixing matrices for
the rescattering effects, and quark diagrams for the weak

decays, their gluonic corrections (but no absorptive part)
and the hadronizations.

These three points will be considered in the three fol-
lowing sections. In the last section, we will apply the ad-
vocated procedure to systematically analyze the B and D
decays into two uncharmed pseudoscalars.

Let us summarize the general procedure we suggest
in this paper. Watson’s theorem implies that the phys-
ical decay amplitudes for a set of processes can be fac-
torized into an FSI part and a bare part. We can then
extract from the full weak amplitudes the FSI contribu-
tions by putting some intermediate states on-shell, and
these states are hadron states entering the S-matrix. Bare
amplitudes are then parametrized using quark diagrams,
and FSIs are introduced using mixing matrices. Finally,
dynamical (e.g. the choice of the set of coupled states) or
symmetry (e.g. SU(2)) considerations will determine the
form of these matrices.

2 Theoretical framework

2.1 Generalized Watson’s theorem

Part of the following discussion is borrowed from [30] and
[25]. Watson’s theorem will allow us to single out the final-
state interaction effects inside the physical weak-decay
amplitudes of B or D. Remember that we are working
to lowest order in the electroweak interaction. Let us be-
gin by expressing the generalized Watson theorem. By W
we denote the column vector formed with the weak am-
plitudes into the possible final states:

W =
(

B → ππ B → ππππ B → KK · · ·
)t

. (12)

S will be the S-matrix containing the coupling among
these final states:

S =




ππ → ππ ππ → ππππ ππ → KK · · ·
ππππ → ππ ππππ → ππππ ππππ → KK · · ·
KK → ππ KK → ππππ KK → KK · · ·

...
...

...
. . .


 .

(13)
The processes entering this S-matrix proceed dominantly
via the strong interaction, the weak contribution being
much smaller. Thus this matrix is block-diagonal, each
block representing mixing among states of definite flavor
quantum numbers. The important point is that W and
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S are built from hadron states like K, π, η, D, B, · · ·; i.e.
states which decay via electroweak interactions only.

The generalized Watson theorem then reads

W =
√

SWb, (14)

CP (W ) =
√

SW ∗
b .

This means that FSI effects contained in S1/2 factorize,
leaving bare amplitudes Wb, which contain no FSIs. These
amplitudes will be written as

Wb =
(

B → {ππ} B → {ππππ} B → {
KK

} · · ·)t
,

(15)
where the {} denotes intermediate states. These bare am-
plitudes contain the weak decay of the heavy quark, with
its gluonic corrections, and the hadronization of the in-
termediate hadron state, but no FSI effect. These rescat-
tering effects are introduced as interactions between these
intermediate hadron states using S1/2. We can also say
that this theorem allows one to extract from physical am-
plitudes the FSI part from the bare part, and this is done
at the hadronic level. In other words, it is hadron states
entering the S-matrix that are put on mass shell as inter-
mediate states. This can also be interpreted as a renormal-
ization of bare amplitudes induced by rescattering effects.

The complete demonstration is in the Appendix. The
main features are as follows.

(1) Watson’s theorem follows from the unitarity con-
dition for the complete S-matrix built from W and S:

S†S = SS† = 1 with S =

(
1 iW t

iCP (W ) S

)
. (16)

Thus we can say that W = S1/2Wb is a unitarization of
weak bare decay amplitudes, since with the adjunction of
the strong phases S1/2, the full S-matrix is unitary.

(2) Bare amplitudes are identified as the part of phys-
ical amplitudes that get complex conjugated under CP .
That is the main point, since this identification implies
elasticity as we will see in the next paragraph. Inverting
the argument, we want to build a model of FSI based on
the elastic hypothesis, we are thus led to this identifica-
tion.

2.2 Elasticity

Elasticity is equivalent to the unitarity of the strong S-
matrix containing the coupling. The elasticity hypothesis
is then hidden in the feature (1) above concerning unitar-
ity of S. Indeed, as soon as S is unitary, S and S1/2 are also
unitary (see (98)). This implies that we have conservation
of probability among the coupled channels:

W †W = W †
b

√
S

†√
S Wb = W †

bWb. (17)

If we note the intermediate states, i.e. states produced and
not yet rescattered by {xi} and final out states by xi, we

can rewrite the strong S-matrix (13) as

S =



{x1} → x1 {x2} → x1 · · · {xn} → x1

{x1} → x2 {x2} → x2 · · · {xn} → x2
...

...
. . .

...
{x1} → xn {x2} → xn · · · {xn} → xn


 . (18)

Probability conservation can be expressed as
n∑

i=1

‖(B → xi)‖2 =
n∑

i=1

‖(B → {xi})‖2 . (19)

This is another expression of elasticity. It is clear that if
we consider all the possible final states, S will be unitary.
In practice, however, we consider couplings only among
a subset of final states (for example, only ππ states), and
thus we neglect many other possible mixings. We then im-
pose the unitarity of a truncated S-matrix, limited to this
subset of states. This is the elastic hypothesis; it is char-
acterized by probability conservation among this subset of
states.

The most important restriction we will impose on the
mixings is to consider coupling between states of two pseu-
doscalars (in the s wave) only. Mixing with states contain-
ing vector mesons, or many particle states are thus ne-
glected. This restriction is convenient in order to ensure a
symmetric form for S. Indeed, S will be symmetric if the
transition amplitudes are invariant under time reversal,
and since a general state may catch a different phase than
PP states under CP , they will not be considered.

2.2.1 FSI eigenchannels

Let us define some technical tools used in the rest of the
paper:

(1) The basis of eigenchannels |Ci〉 where S is diagonal,
with matrix elements
‖〈Ci |S|Cj〉‖2 = δij ⇒ 〈Ci |S|Cj〉 = δije2iδCi . (20)

Therefore these states Ci do not mix under rescattering.
Elasticity becomes manifest in the unit norm, which in
turn is equivalent to unitarity for S.

(2) These diagonal elements of S are the strong phases:

Sdiag ≡




e2iδC1 0 · · · 0
0 e2iδC2 · · · 0
...

...
. . .

...
0 0 · · · e2iδCn


 . (21)

(3) Since the S-matrix is symmetric and unitary, we can
diagonalize it using a real orthogonal transformation O:

S = OtSdiagO. (22)

The orthogonal diagonalizing matrix O also relates the
eigenchannel basis to the physical one:

∣∣∣−→C〉 ≡


|C1〉
|C2〉

...
|Cn〉


 = O



{x1}
{xn}

...
{xn}


 ≡ O

∣∣∣−−→{x}〉 . (23)



Ch. Smith: SU(N) elastic rescattering in B and D decays 643

(4) The mixing matrix M is simply the square root of S,
which appears in Watson’s theorem, and is defined as{

M ≡ √S = Ot
√

SdiagO,

Mdiag ≡
√

Sdiag.
(24)

(5) With these tools, we can give another derivation of
Watson’s theorem. Let us define some renormalized out
eigenstates by∣∣∣−→C〉→ ∣∣∣−→C out

〉
=
√

Sdiag

∣∣∣−→C〉 , (25)

and this is equivalent to (20)
〈Ci,out | Cj,out〉 = 〈Ci |Sdiag|Cj〉 = δije2iδi . (26)

In the physical basis we have the following situation:

∣∣∣−→C〉 = O

∣∣∣−−→{x}〉 ,∣∣∣−→C out

〉
= O |−→x 〉 ,

(27)

i.e. the development of the intermediate states in terms of
intermediate eigenchannels is the same as the development
of final asymptotic states in terms of out eigenchannels.
Putting all this in equations gives
|−→x 〉 = Ot

∣∣∣−→C out

〉
= Ot

√
Sdiag

∣∣∣−→C〉 = Ot
√

SdiagO
∣∣∣−−→{x}〉 ,

(28)
and the final result is

|−→x 〉 =
√

S
∣∣∣−−→{x}〉 ≡M

∣∣∣−−→{x}〉 . (29)

For the decay amplitudes, we recover Watson’s theorem:

−−−−−→
(B → x) =




(B → x1)
(B → x2)

...
(B → xn)


 = M




(B → {x1})
(B → {x2})

...
(B → {xn})




= M
−−−−−−−−→
(B → {x}) . (30)

2.2.2 Application to D decays

The treatment of weak-decay amplitudes of D is the same
as in the B case. We will write

−−−−−→
(D → x) = M

−−−−−−−−→
(D → {x}) . (31)

However, since FSIs in D decays proceed at a lower energy
than in B decays, and since the number of open channels
in D decays is much smaller than in B decays, the M -
matrix structure is not necessarily the same for B and D
decays, and the rescattering phases are different.

2.2.3 One rescattering channel

In the case of only one rescattering channel, writing Wb =
W eiγ and S1/2 = eiδ, W = S1/2Wb is equivalent to the
well-known result:{

W = W eiγeiδ,

CP (W ) = W e−iγeiδ,
(32)

i.e. that under CP the weak phase γ is reversed and not
the strong phase δ. The matrix version for many rescat-
tering channels really appears as a simple generalization.

3 SU(N) flavor symmetry implications

3.1 SU(N) elasticity: Definition

A mixing will be elastic under SU(N) if

(1) the FSI eigenchannels Ci are definite states of
SU(N).
(2) The orthogonal transformation is the Clebsch–
Gordan coefficient matrix relating the physical
states to the SU(N) states.
(3) The phases (Mdiag matrix elements) depend on
the representation of the corresponding eigenchan-
nels only.

The point (2) has a direct and important consequence:
working under a symmetry group fixes the form of mixing
matrices (they are completely determined by the repre-
sentation contents of the final states), and imposes some
restrictions on the mixings. Indeed, a group of states cou-
pled together under SU(N) is a group of states contain-
ing some common representations of SU(N). The decaying
meson (B, D, · · ·), on the other hand, fixes the energy scale
at which FSIs take place, and thus determines the values
of the strong phases.

In general, a symmetry group fixes the set of coupled
channels, and this set increases with N . On the other
hand, the symmetry breaking also increases with N . For
example, in B decays, we can treat the mixing Kπ, Kη
under SU(4), in order to include charmed meson channels,
but the breaking of SU(4) at the B-mass energy is such
that SU(4) elasticity is expected to be inappropriate.

Terminology To properly define elasticity, we can distin-
guish the following concepts:

(i) Pure elastic transitions like {K+π−}
→ K+π− with just a phase as amplitude.

(ii) SU(N) elasticity, for which we have elas-
ticity in a basis of eigenchannels corresponding to
SU(N) states.

(iii) Elasticity, for which we can define some
general eigenchannels Ci by a set of mixing pa-
rameters (see 112). This is sometimes considered
as inelastic since we can have, for example, eigen-
channels with no specific isospin.

3.2 SU(2) analysis of K+π−, K0π0, K0η8

To accomplish the connection with Sect. 1, consider the
system K+π−, K0π0, K0η8 and suppose we are working
under SU(2). The SU(2) FSI eigenchannels are then
 |C1〉
|C2〉
|C3〉


 ≡


 |3/2,−1/2〉∣∣1/2(1),−1/2

〉∣∣1/2(2),−1/2
〉



=


−

√
1/3 −√2/3 0

−√2/3
√

1/3 0
0 0 1




{K

+π−}{
K0π0

}{
K0η8

}

 . (33)
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This means that K+π−, K0π0 are mixed under SU(2),
since they contain the same representations of isospin 3/2
and 1/2(1), but K0η8, being in a different 1/2 representa-
tion, stays alone. The OSU(2) matrix (Clebsch–Gordan co-
efficients) is block-diagonal, and so is MSU(2). The phases
entering M

SU(2)
diag , depending only on the eigenchannels

SU(2) representations, are:

M
SU(2)
diag =




eiδ3/2 0 0

0 eiδ(1)
1/2 0

0 0 eiδ(2)
1/2


 . (34)

The SU(2) elasticity is expressed in these eigenchannels
as 


‖〈3/2,−1/2 |S| 3/2,−1/2〉‖2 = 1∥∥〈1/2(1),−1/2 |S| 1/2(1),−1/2

〉∥∥2
= 1∥∥〈1/2(2),−1/2 |S| 1/2(2),−1/2

〉∥∥2
= 1

⇒




〈3/2,−1/2 |S| 3/2,−1/2〉 = e2iδ3/2 ,〈
1/2(1),−1/2 |S| 1/2(1),−1/2

〉
= e2iδ(1)

1/2 ,〈
1/2(2),−1/2 |S| 1/2(2),−1/2

〉
= e2iδ(2)

1/2 .

(35)

The M -matrix is then calculated as MSU(2) = Ot
SU(2)

M
SU(2)
diag OSU(2), and we finally have

MSU(2) =


1
3

(
eiδ3/2 + 2eiδ(1)

1/2

) √
2

3

(
eiδ3/2 − eiδ(1)

1/2

)
0

√
2

3

(
eiδ3/2 − eiδ(1)

1/2

)
1
3

(
2eiδ3/2 + eiδ(1)

1/2

)
0

0 0 eiδ(2)
1/2


 ,(36)

which is the same matrix (for the Kπ sector) as in Sect. 1
(see (5)).

3.2.1 Intermediate and asymptotic states

At this point, we can repeat the discussion of the preceding
section and define out isospin eigenchannels:(
|C1〉 = |3/2,−1/2〉
|C2〉 = |1/2,−1/2〉

)
→
(
|C1,out〉 = |3/2,−1/2〉out
|C2,out〉 = |1/2,−1/2〉out

)

=

(
eiδ3/2 |3/2,−1/2〉
eiδ1/2 |1/2,−1/2〉

)
, (37)

and for the physical states we write(
{K+π−}{
K0π0

}
)

= Ot
SU(2)

(
|C1〉 = |3/2,−1/2〉
|C2〉 = |1/2,−1/2〉

)
, (38)

(
K+π−

K0π0

)
= Ot

SU(2)

(
|C1,out〉 = |3/2,−1/2〉out
|C2,out〉 = |1/2,−1/2〉out

)
,

so the link between intermediate and asymptotic states is
given by (

K+π−

K0π0

)
= MSU(2)

(
{K+π−}{
K0π0

}
)

. (39)

This shows once again that SU(2) fixes the structure of
MSU(2) and that only the representation contents of the
final states is relevant. This in turn implies that the same
matrix is appropriate for B and D decays. Of course, the
phases δ3/2 and δ1/2 can be different since their specific
values is a dynamical question (they depend on the energy
available, i.e. the mass of the decaying meson). So, for
example, we can write((

B0 → K+π−)(
B0 → K0π0

)
)

= MSU(2)

((
B0 → {K+π−})(
B0 → {

K0π0
})
)

.

(40)

3.2.2 Decay amplitudes

As we have shown in Sect. 1, by applying this MSU(2) ma-
trix on the isospin decompositions into bare amplitudes
(3), we find again (1). This is a general principle. The
usual procedure to take into account SU(N) FSIs in a
SU(N) bare amplitude decomposition is to add phases to
the SU(N) bare amplitudes according to their SU(N) rep-
resentations. As we have said, applying the SU(N) mixing
matrix on SU(N) bare decompositions is equivalent, i.e.
the usual prescription is equivalent to a mixing of states,
and the M -matrices provide a clear representation of these
mixings.

Let us illustrate this fact in the example of K+π−,
K0π0 under SU(2). From∣∣∣HW D0

〉
=

√
1
3
|3/2〉 −

√
2
3
|1/2〉 (41)

and (33), we found the isospin decomposition (3) with
AT

b ∼ 〈T | T 〉. The point is to note that the same orthog-
onal transformation is used in the calculation of decom-
position and of mixing matrices (this remains valid under
any SU(N)). To find the decompositions in terms of full
amplitudes, just replace the intermediate states |T 〉 by out
states eiδT |T 〉, and this is strictly equivalent to renormal-
ize AT

b → AT ∼ eiδT 〈T | T 〉 .

3.3 SU(3) analysis of K+π−, K0π0, K0η8

Under SU(3), the same group of states mixes completely
because they all contain the same 27 and 8:

 |C1〉
|C2〉
|C3〉


 ≡


 |27, 3/2,−1/2, 1〉
|27, 1/2,−1/2, 1〉
|8S , 1/2,−1/2, 1〉




=


 −

√
1/3 −√2/3 0

−√1/15
√

1/30 −√9/10
−√3/5

√
3/10

√
1/10



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×


 {K

+π−}{
K0π0

}{
K0η8

}

 , (42)

where SU(3) states are specified as |rep., T, T3, Y 〉. MSU(3)
diag

is given by

M
SU(3)
diag =


 eiδ27 0 0

0 eiδ27 0
0 0 eiδ8


 . (43)

From this orthogonal transformation and M
SU(3)
diag , we im-

mediately recover (10):

MSU(3) =
1
5


2eiδ27 + 3eiδ8 3√

2

(
eiδ27 − eiδ8

) √
3
2

(
eiδ27 − eiδ8

)
3√
2

(
eiδ27 − eiδ8

) 1
2

(
7eiδ27 + 3eiδ8

) −√
3

2

(
eiδ27 − eiδ8

)√
3
2

(
eiδ27 − eiδ8

) −√
3

2

(
eiδ27 − eiδ8

) 1
2

(
9eiδ27 + eiδ8

)

 .

The same matrix MSU(3) can also be used for other de-
cays, since it is determined by the representation contents
of the final states only. For example:


(Bs → {K−π+})(
Bs →

{
K

0
π0
})

(
Bs →

{
K

0
η8

}) or




(
D

0 → {K+π−}
)

(
D

0 → {
K0π0

})(
D

0 → {
K0η8

}) .

(44)
We have thus recovered and explained the results of
Sect. 1.2.

3.4 Probability conservation

We can use probability conservation to characterize the
difference between SU(2) and SU(3) elasticity (see (111)).
Probability conservation can be expressed under SU(2) by
(see (45) on top of the next page) and under SU(3), in a
less restrictive way, by (see (46) on top of the next page).

3.5 Links between SU(N) and SU(N±1)

3.5.1 Principle

As we have seen above, an elastic mixing under SU(N)
is not in general elastic under SU(N − 1). Suppose we
have the matrices MSU(N) and MSU(N−1). This latter ma-
trix is block diagonal, since it mixes only some subsets of
states. Therefore, to go from SU(N − 1) towards SU(N)
elastic mixings, we will have to add to MSU(N−1) some
extra mixing between different sets of SU(N − 1) coupled
states. These new mixings are not completely arbitrary:
they must be compatible with the SU(N − 1) included in
SU(N). Such extra mixings will be parametrized by mix-
ing parameters α, β, · · ·, and we will obtain a generalized

mixing matrix Mgen.(α, β, · · ·). Finally, for a specific value
of α, β, · · ·, this matrix will correspond to MSU(N).

We will not describe the most general case, but we will
take again the system K+π−, K0π0, K0η8 and perform
the transition from a SU(2) description to a SU(3) descrip-
tion. The discussion in the general case is then straight-
forward.

3.5.2 From SU(2) to SU(3)

Step 1 Building of the most general mixing among
K+π−, K0π0, K0η8 compatible with isospin.

As we have seen, (33) defines isospin eigenchannels for
SU(2) FSI. The only possible extra mixing is between the
two 1/2 eigenchannels, since we want to keep isospin as a
good quantum number for FSI eigenchannels. This extra
mixing can be parametrized by a general 2× 2 orthogonal
matrix (112):
 |C1〉
|C2〉
|C3〉


 ≡


1 0 0

0 cos α − sinα

0 sinα cos α




 |3/2,−1/2〉∣∣1/2(1),−1/2

〉∣∣1/2(2),−1/2
〉

 .

(47)
In terms of physical intermediate states, this gives

 |C1〉
|C2〉
|C3〉


 ≡


 −√1/3 −√2/3 0
−√2/3 cos α

√
1/3 cos α − sinα

−√2/3 sinα
√

1/3 sinα cos α




×


{K

+π−}{
K0π0

}{
K0η8

}

 . (48)

This equation defines new eigenchannels and the corre-
sponding orthogonal transformation O (α) . Note that these
new eigenchannels keep isospin as a good quantum num-
ber (C1: 3/2, C2 and C3: 1/2). Mgeneral

diag in this basis is
given by

Mgeneral
diag =


 eiδC1 0 0

0 eiδC2 0
0 0 eiδC3


 . (49)

We can calculate Mgeneral (α) = O(α)tMgeneral
diag O(α) (see

(50) on top of the next page) where s = sinα and c =
cos α.

For each value of the mixing parameter α, Mgeneral (α)
parametrizes an elastic mixing among K+π−, K0π0, K0η8
compatible with isospin (but inelastic for SU(2)).

Step 2 SU(3) mixing appears as a special case of the gen-
eral mixing Mgeneral (α) .

Indeed, SU(3) mixings are obtained from the SU(2)
ones by introducing an extra mixing compatible with
SU(2), since the isospin group is a subgroup of SU(3) (a
SU(3) elastic eigenchannel could not be a mixture of 3/2
and 1/2 isospin states). The SU(3) limit is now easy to
get: for cosα = (1/10)1/2 and sinα = (9/10)1/2, O(α)
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SU(2)

{∥∥(D →
{
K+π−})∥∥2

+
∥∥(D →

{
K0π0

})∥∥2
=
∥∥(D → K+π−)∥∥2

+
∥∥(D → K0π0

)∥∥2
,∥∥(D →

{
K0η8

}
)
∥∥2

=
∥∥(D → K0η8)

∥∥2 (45)

SU(3)

{∥∥(D →
{
K+π−})∥∥2

+
∥∥(D →

{
K0π0

})∥∥2
+
∥∥(D →

{
K0η8

})∥∥2

=
∥∥(D → K+π−)∥∥2

+
∥∥(D → K0π0

)∥∥2
+
∥∥(D → K0η8

)∥∥2
.

(46)

1
3


 eiδC1 + 2c2eiδC2 + 2s2eiδC3

√
2
(
eiδC1 − c2eiδC2 − s2eiδC3

) √
6sc
(
eiδC2 − eiδC3

)
√

2
(
eiδC1 − c2eiδC2 − s2eiδC3

)
2eiδC1 + c2eiδC2 + s2eiδC3 −√

3sc
(
eiδC2 − eiδC3

)
√

6sc
(
eiδC2 − eiδC3

)
−√

3sc
(
eiδC2 − eiδC3

)
3(s2eiδC2 + c2eiδC3)


 , (50)

MSU(2 in 3) =




e
iδ3/2

27
3 + e

iδ1/2
27
15 + 3e

iδ1/2
8
5

1√
2

(
2e

iδ3/2
27
3 − e

iδ1/2
27
15 − 3e

iδ1/2
8
5

) √
6

10

(
eiδ1/2

27 − eiδ1/2
8

)
1√
2

(
2e

iδ3/2
27
3 − e

iδ1/2
27
15 − 3e

iδ1/2
8
5

)
2e

iδ3/2
27
3 + e

iδ1/2
27
30 + 3e

iδ1/2
8

10

√
3

10

(
eiδ1/2

8 − eiδ1/2
27

)
√

6
10

(
eiδ1/2

27 − eiδ1/2
8

) √
3

10

(
eiδ1/2

8 − eiδ1/2
27

)
1
10

(
9eiδ1/2

27 + eiδ1/2
8

)


 . (52)

equals the orthogonal matrix of SU(3) Clebsch–Gordan
(42). This means that the three channels Ci tend towards
the SU(3) states |27, 3/2,−1/2, 1〉, |27, 1/2,−1/2, 1〉 and
|8S , 1/2,−1/2, 1〉. Then the corresponding phases tend to-
wards the SU(3) phases: eiδC1 , eiδC2 → eiδ27 and eiδC3 →
eiδ8 . We have thus completed the passage from SU(2) to
SU(3).

Remarks: (1) Note that it is sometimes necessary to in-
troduce a P = diag(±1, · · · ,±1) matrix in order to have
P ·O(α)→ OSU(3), since the latter depends on phase con-
ventions. On the other hand, the M -matrix, being physi-
cal, is always phase-convention independent. In other
words, orthogonal transformations differing by a P -matrix
give the same M -matrix.

(2) In SU(2), the mixing of Kπ states with state K0η8
is neglected. We have shown in this section that the extra
mixing needed to treat the mixings among K+π−, K0π0,
K0η8 under SU(3) elasticity is quite big (the two chan-
nels 1/2 get nearly inverted). At the cost of one unknown
mixing parameter α, we can use (50), which is compatible
with both SU(2) and SU(3) to introduce a “small” mixing
between Kπ and K0η8. This will be done in Sect. 5.

3.5.3 SU(2) in SU(3)

Still in the same example, we will illustrate another link
between SU(3) and SU(2). A very interesting form for the
mixing matrix is built from the following diagonal form:

M
SU(2 in 3)
diag =


 eiδ3/2

27 0 0
0 eiδ1/2

27 0
0 0 eiδ1/2

8


 , (51)

i.e. we distinguish isospin in SU(3); the three phases are
different. From this matrix, by applying the orthogonal

SU(3) transformation, we obtain (see (52) on top of the
page).

This form can be very useful in phenomenological anal-
yses, since it is an easy way to implement SU(3) breaking
in the FSI . We can recover the SU(2) and SU(3) limits
straightforwardly. If we identify eiδ3/2

27 and eiδ1/2
27 , we find

again MSU(3). On the other hand, if we identify eiδ3/2
27 with

eiδ3/2 , eiδ1/2
27 and eiδ1/2

8 with eiδ1/2 , we find the following
mixing:

Mmodified
SU(2)

=




1
3

(
eiδ3/2 + 2eiδ1/2

) √
2

3

(
eiδ3/2 − eiδ1/2

)
0√

2
3

(
eiδ3/2 − eiδ1/2

) 1
3

(
2eiδ3/2 + eiδ1/2

)
0

0 0 eiδ1/2


 , (53)

which is built from the SU(2) orthogonal transformation
(33) with a modified M

SU(2)
diag (see (34)). This modified form

is obtained from the identification: δ
(1)
1/2 = δ

(2)
1/2 = δ1/2. We

can easily explain this: the SU(3) orthogonal transforma-
tion has the structure O(α) = OextraOSU(2) (see (48)).
Then Mmodified

SU(2) = OSU(2),tOextra,tM
SU(2)
diag OextraOSU(2)and

with δ
(1)
1/2 = δ

(2)
1/2, Oextra simplifies, leaving the SU(2) trans-

formation.

3.5.4 Concluding remarks

This section is of theoretical and practical importance. On
the theoretical side, we have defined SU(N) elasticity as
a special case of the general elasticity concept.

On the practical side, we have shown how to build
mixing matrices explicitly. We have obtained four differ-
ent mixing matrices for the system

{
K+π−, K0π0, K0η8

}
:

Mgeneral (α) , MSU(3), MSU(2) and MSU(2 in 3) with its
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limit Mmodified
SU(2) . We can now choose to use any form, in-

dependently of the parametrization chosen for the bare
decay amplitudes. This illustrates the power of this ma-
trix method for treating FSI. Since we have factorized FSI
from bare amplitudes inside physical amplitudes, these
two aspects can be analyzed independently.

We stress again that all this can be repeated for other
mixings, other flavor symmetry groups and other meson
decays.

4 Quark diagrams

The B and D decays can be parametrized with quark di-
agram (QD) amplitudes. The ultimate goal of QDs is to
test the standard model. To achieve this, we must com-
pare a calculated value of an amplitude to its measured
value. We will show that by defining quark diagrams as
free of any FSI effect, they are well-defined in terms of
basic topologies, and thus allow in principle to reach such
a goal.

Using Watson’ theorem, physical amplitudes can be
decomposed into bare amplitudes and FSI matrices. We
are thus naturally led to the following parametrization:

Physical decay amplitudes Watson′s theorem→{
Bare amplitudes: Quark diagrams
FSI effects: Mixing matrices

We will now analyze the consequences.

4.1 Quark diagrams as bare amplitudes

Since quark diagrams are free of any FSI effects, they are
real, except for CKM phases. In other words, QDs are de-
fined at the level of bare amplitudes. They contain the
weak decay of the heavy quark, the hadronization and
some gluonic renormalizations of the weak current (with-
out absorptive part).

FSIs are introduced as interactions between hadrons,
using FSI phases. In this way, we avoid the difficulties (if
not the inconsistencies), of on-shell quarks since we are
always working with on-shell hadrons, i.e. states entering
the S-matrix. The treatment of FSI at the hadronic level
is ultimately justified by the S-matrix hadronic structure.

4.2 Quark-diagram topologies
and FSI topology mixings

Quark diagrams are built from quark lines and W lines.
The resulting topologies (or “shapes”) of these diagrams
are the usual tree T , color-suppressed C, annihilation A,
exchange E, penguin P and penguin annihilation PA di-
agrams (see [2–11]). These can also be defined from two
basic topologies (a bubble, representing the quark–gluon

In State

Out State

T A PA

EC P

Hadronization :

Fig. 1. The two basic topologies and quark diagrams extrac-
tions
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Fig. 2. Illustration of the Watson theorem using quark di-
agrams: FSIs are viewed as mixings of basic quark diagram
topologies

sea, with a W inside and two bubbles connected by a W ),
from which we extract real hadrons (Fig. 1).

The assertion that QDs allow dynamical considera-
tions when defined at the bare level comes from the well-
known fact that final-state interactions mix the differ-
ent topologies. In particular, any scheme like factorization
should be carried at the level of these “bare” QDs. Fur-
thermore, helicity suppression of A is valid only if A is
a bare amplitude, since otherwise it could contain other
basic topologies than A.

The establishment of the QD parametrizations of bare
decay amplitudes is explained in Appendix 2, where the
link between SU(3) bare amplitudes and QDs is also writ-
ten. The QD parametrizations of B and D decays are
given in Appendix 3.

Discussion In Fig. 2 we have drawn two possible diagrams
((a) and (b)) contributing to

(
D

0 → K+π−
)
. The scheme

of introducing QDs at the bare level and FSI as hadronic
mixing matrices is depicted in the passage from (a) and
(b) to (c) and (d), i.e. by the identification of the relevant
hadronic intermediate states. These hadrons then inter-
act, and this interaction is the FSI. Figures (c) and (d)
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also show that basic quark diagrams automatically oc-
cur as bare topologies, and the resulting physical ampli-
tude

(
D

0 → K+π−
)

receives contributions from its QD

topologies D
0 → {K+π−} = T + E, and also from some

extra topologies (here, some C) coming from D
0 →{

K0π0
}
.

If we had introduced quark diagrams at the physi-
cal level, we would have obtained for the physical ampli-
tudes

(
D

0 → K+π−
)

= T full + Efull. Now looking at the
quark lines in Fig. 2b, we see that this diagram is topolog-
ically equivalent to the E topology, i.e. that it contributes
to Efull. So this Efull amplitude, containing FSI effects,
contains some C topology. Doing the same analysis with
Fig. 2a, we can see that this diagram is a non-factorizable
contribution to T full. When introduced with FSI effects, T
loses its factorization properties. By analyzing some other
decays, one can easily see that an amplitude Afull receives
contributions from other topologies than A. Thus Afull is
not helicity suppressed.

In conclusion, this discussion shows that in order to
have well-defined quark diagrams in terms of basic topolo-
gies, they should be defined at the bare level, without
rescattering effects. We have also shown how some consid-
erations like factorizability or helicity suppression collapse
when QDs contain FSI effects.

Remark: The elastic hypothesis is to introduce these
quark diagrams at the level of bare amplitudes. Other
propositions exist, for example to introduce QDs at the
level of different amplitudes in the K-matrix formalism
(for this K-matrix formalism, see for example [13–18]).

4.3 Use of mixing matrices on QD decompositions

By using Watson’s theorem we have shown that FSI and
bare processes separate. We can thus analyze each part
independently; for example,


Bare amplitudes:




SU(2),SU(3), · · · amplitudes
Quark diagrams→
under SU(2),SU(3), · · ·

FSI effects:
(Mixing matrices)




under SU(2) with MSU(2)

under SU(3) with MSU(3)

as a general mixing
with Mgeneral(α, β, · · ·)
under SU(3) with SU(2)
specified with MSU(2 in 3)

· · ·

The physical decay amplitudes are obtained by apply-
ing the chosen mixing matrix on the chosen bare decay
parametrizations. The next section will extensively illus-
trate this procedure.

5 Applications to B and D decays

The two pseudoscalar final states can be grouped into sets
of coupled states under SU(3) (denoted inside {}) by con-
sidering conserved quantum numbers: isospin T and hy-
percharge Y . In fact, these sets correspond to the sets of
definite T3 and Y , since they completely mix. The only
exception is

{
π−π0

}
states (pure isospin 2) which do not

mix with
{
K−K0, π−η8

}
(pure isospin 1). Repeating the

same analysis, we can also find sets of coupled states under
SU(2). The results for SU(3) and SU(2) mixing are

(a) Kπ and Kπ sets (Y = ±1, T3 = ±1/2)

A : SU(3) :
{
K+π−, K0π0, K0η8

}
SU(2) :

{
K+π−, K0π0}{K0η8

}
,

B : SU(3) :
{
K0π+, K+π0, K+η8

}
SU(2) :

{
K0π+, K+π0}{K+η8

}
,

C : SU(3) :
{

K0π−, K−π0, K−η8

}
SU(2) :

{
K0π−, K−π0

}{
K−η8

}
,

D : SU(3) :
{

K−π+,K0π0,K0η8

}
SU(2) :

{
K−π+,K0π0

}{
K0η8

}
.

(b) KK, πη sets (Y = 0, T3 = ±1)

E : SU(3) :
{
K−K0, π−η8

}{
π−π0}

SU(2) :
{
K−K0}{π−η8

}{
π−π0} ,

F : SU(3) :
{

K+K0, π+η8

}{
π+π0}

SU(2) :
{

K+K0
}{

π+η8
}{

π+π0} .

(c) KK, πη, ππ, ηη set (Y = 0, T3 = 0)

G :

{
K−K+, K0K0, η8η8, π

+π−, π0π0, π0η8

}
lSU(3)
SU(2){

K−K+, K0K0
}
{η8η8}

{
π+π−, π0π0

}{
π0η8

}
.

(d) Also some isolated states (i.e. which do not mix)
like for example K0π−, (Y = 1, T3 = −3/2).

We see from this analysis that we have to consider
two-channel, three-channel and six-channel mixings under
SU(3), and only two-channel mixings under SU(2).

5.1 Two-channel mixings

5.1.1 Different parametrizations of M

In this section, we will develop quite extensively the gen-
eral two-channel mixing parametrizations. We start from
a general orthogonal transformation (112) and Mdiag:
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M (2) =
1
2

((
1+

√
1 − 4ε2

)
eiδ1 +

(
1−√

1 − 4ε2
)
eiδ2 2ε

(
eiδ2 − eiδ1

)
2ε
(
eiδ2 − eiδ1

) (
1−√

1 − 4ε2
)
eiδ1 +

(
1+

√
1 − 4ε2

)
eiδ2

)
, (56)

(
|C1〉
|C2〉

)
= P

(
cos α − sinα

sinα cos α

)(
{x1}
{x2}

)
,

Mdiag =

(
eiδ1 0
0 eiδ2

)
. (54)

By defining ε = cos α sinα, λ = 2ε sin
(

δ2−δ1
2

)
, we obtain

the following forms:

M (1) =

(
cos2 αeiδ1 + sin2 αeiδ2 cos α sinα

(
eiδ2 − eiδ1

)
cos α sinα

(
eiδ2 − eiδ1

)
sin2 αeiδ1 + cos2 αeiδ2

)
,

(55)
(see (56) on top of the page)

M (3) =


√1− λ2eiβ1 iλei

(
β2+β1

2

)
iλei
(

β2+β1
2

) √
1− λ2eiβ2




with

{
β1 = arg

(
cos2 αeiδ1 + sin2 α eiδ2

)
,

β2 = arg
(
sin2 αeiδ1 + cos2 α eiδ2

)
,

(57)

M (4) = eiδ1

[(
1 0
0 1

)
+
(
ei(δ2−δ1) − 1

)

×
(

sin2 α cos α sinα

cos α sinα cos2 α

)]
. (58)

Here β1 + β2 = δ1 + δ2 and the last form is obtained from
(114).

5.1.2 Parametrization of M2 = S: The elasticity parameters

In this section, we will define the elasticity parameter. Let
us consider a general coupled system of two states X1 and
X2. We can describe this system in three different bases:
The eigenchannel basis (C1, C2), with

Seigen =

(
e2iδ1 0

0 e2iδ2

)
; (59)

the isospin basis (T1, T2), with

Sisospin =

(
ηwe2iw1 i

√
1− η2

wei(w1+w2)

i
√

1− η2
wei(w1+w2) ηwe2iw2

)
,

(60)
and the physical basis (X1, X2), with

Sphysical =

(
ηe2iα1 i

√
1− η2ei(α1+α2)

i
√

1− η2ei(α1+α2) ηe2iα2

)
.

(61)
Thus, we have two different possible definitions of the elas-
ticity parameter: (1) The parameter ηw quantifies the de-
viation of S in the isospin basis from its diagonal form
in the eigenchannel basis. SU(2) elasticity implies ηw = 1

since when ηw = 1, Seigen = Sisospin. The phases w1 and
w2 are then eigenphases, sometimes called Watson phases
(hence the subscript w to ηw).

(2) The parameter η quantifies the deviation of S in
the physical basis from its diagonal form in the eigenchan-
nel basis. This is the way the elasticity parameter will be
defined in this paper. This definition allows one to define
a elasticity parameter for every mixings, including SU(2)
elastic mixings.

This η elasticity parameter is defined in terms of the
mixing parameter in the following way (the complete dis-
cussion is in the Appendix): Sphysical is built in the stan-
dard way, as a general coupled channel mixing:

Sphysical(δ1, δ2, β) = Ot(β)Seigen(δ1, δ2)O(β), (62)

with

O(β) =

(
cos β − sinβ

sinβ cos β

)
.

We can change the parameter basis from δ1, δ2, β to α1, α2,
η. The elasticity parameter is then given in terms of the
mixing parameter as

η =
√

1− 4ε2 sin2(δ2 − δ1); ε = cos β sinβ. (63)

This formula is quite interesting. We can distinguish two
factors contributing to η:

– The ε parameter quantifies the non-diagonal trend of
O(β), i.e. the distance between the physical basis and
the eingenchannel basis.

– The elasticity parameter η quantifies the non-diagonal
trend of S, which is a function of both ε and the eigen-
phase difference, since if these phases are equal, the
mixings disappear.

Remarks: It is now clear that the form (60) used in some
other papers to introduce inelasticity is equivalent to a
general two-channel elastic mixing in the context of Wat-
son’s theorem. Note, however, that this form ( 60) is also
used as a general parametrization for a 2×2 unitary sym-
metric matrix in the K-matrix formalism, and it no longer
reduces to an elastic parametrization there.

5.1.3 SU(2 or 3) two-channel mixings in B and D decays

In this section, we will give the parameters defined above
for the different two-channel mixings among two pseu-
doscalar states, in the framework of SU(2) and SU(3).
From these parameters, one can easily rebuild the mix-
ing matrix using one of the forms M (1) to M (4) (55–58).
(see (64) on top of the next page)
Note that in all the mixings, we have η very close to
cos(δ1 − δ0), i.e. maximal mixings.
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Flavor Coupled states
Strong
phases

Mixing
parameters

Elasticity parameters

groups δ1 δ2 cos β sin β

SU(3)

{
K−K0, π−η8

}{
K+K0, π+η8

} δ27 δ8

√
2/5

√
3/5

ε2 = 6/25 = 0.24
η =

√
1 − 24

25 sin2(δ27 − δ8){
K+π−, K0π0

}{
K−π+, K0π0

} δ3/2 δ1/2 −
√

1/3
√

2/3
ε2 = 2/9 ≈ 0.22

η =
√

1 − 8
9 sin2(δ3/2 − δ1/2)

SU(2)

{
K0π−, K−π0

}{
K0π+, K+π0

} δ3/2 δ1/2

√
1/3

√
2/3

ε2 = 2/9 ≈ 0.22
η =

√
1 − 8

9 sin2(δ3/2 − δ1/2){
π+π−, π0π0

}
δ2 δ0

√
1/3

√
2/3

ε2 = 2/9 ≈ 0.22
η =

√
1 − 8

9 sin2(δ2 − δ0){
K+K−, K0K

0
}

δ1 δ0

√
1/2

√
1/2

ε2 = 1/4 (maximal)
η = cos(δ1 − δ0)

(64)

(
B+ → K+K0

B+ → π+η8

)
= M

SU(3)
F

(
V ∗

ubVud (A + P ) + V ∗
cbVcd (P c) + V ∗

tbVtd

(
P t
)

1√
6

[
V ∗

ubVud (T + C + 2A + 2P ) + V ∗
cbVcd (2P c) + V ∗

tbVtd

(
2P t
)]) . (66)

5.1.4 Quark diagrams

We will illustrate the application of the preceding mix-
ing matrices on QD parametrizations of

{
K−K0, π−η8

}
only. The other channels will be treated when dealing with
three- and six-channel mixings.

The SU(3) mixings among the E :
{
K−K0, π−η8

}
in

D decays (Cabibbo approximation for CKM) is simply
given by M

SU(3)
E :(

D− → K−K0

D− → π−η8

)

= V ∗
cdVud

(
1
5

(
2eiδ27 + 3eiδ8

) √
6

5

(
eiδ8 − eiδ27

)
√

6
5

(
eiδ8 − eiδ27

) 1
5

(
3eiδ27 + 2eiδ8

)
)

×
(

−T + A
1√
6

(T + 3C + 2A)

)
. (65)

We can proceed similarly in B decays (mixing F :
{
K+K0,

π+η8
}
) (see (66) on top of the page)

5.2 Three-channel mixings

5.2.1 Bare amplitudes

Consider for definiteness the set of decays D
0

to K+π−,
K0π0, K0η8. The SU(3) QD decompositions are, omitting
CKM elements,




(
D

0 → {K+π−}
)

= T + E,(
D

0 → {
K0π0

})
= 1√

2
(C − E) ,(

D
0 → {

K0η8
})

= 1√
6

(C − E) .

(67)

5.2.2 Physical amplitudes

We can now apply FSI mixing matrices on these bare am-
plitudes to obtain a parametrization of the physical decay
amplitudes.

SU(3) mixings Applying the SU(3) elastic mixing matrix
(10), we find the full amplitudes:


(
D

0 → K+π−
)

= T

(
2eiδ27 + 3eiδ8

5

)
+C

2
5
(
eiδ27 − eiδ8

)
+ Eeiδ8 ,(

D
0 → K0π0

)
= 1√

2

(
T

3
5
(
eiδ27 − eiδ8

)
+C

(
3eiδ27 + 2eiδ8

5

)
− Eeiδ8

)
,(

D
0 → K0η8

)
= 1√

6

(
T

3
5
(
eiδ27 − eiδ8

)
+C

(
3eiδ27 + 2eiδ8

5

)
− Eeiδ8

)
.

(68)
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Mgeneral (α) =




1
3


 eiδC1 + 2eiδC2

√
2
(
eiδC1 − eiδC2

)
0√

2
(
eiδC1 − eiδC2

)
2eiδC1 + eiδC2 0

0 0 3eiδC2




+(eiδC3−eiδC2)
3


 2 sin2 α −√

2 sin2 α −√
6 cos α sin α

−√
2 sin2 α sin2 α

√
3 cos α sin α

−√
6 cos α sin α

√
3 cos α sin α 3 cos2 α







. (70)

SU(2) mixings If we choose to apply the SU(2) matrix
(36), we get




(
D

0 → K+π−
)

= T


eiδ3/2 + 2eiδ(1)

1/2

3




+C


eiδ3/2 − eiδ(1)

1/2

3


+ Eeiδ(1)

1/2 ,

(
D

0 → K0π0
)

= 1√
2


T




2
(

eiδ3/2 − eiδ(1)
1/2

)
3




+C


2eiδ3/2 + eiδ(1)

1/2

3


− Eeiδ(1)

1/2


 ,

(
D

0 → K0η8

)
= 1√

6
(C − E) eiδ(2)

1/2 .

(69)

General mixings Instead of applying directly the Mgeneral

(α) (50), let us rewrite it in an interesting way. Using a
decomposition like (114), we write (see (70) on top of the
page). We see that the first term corresponds to SU(2)
mixing (see (36)), and the second one is the perturba-
tion due to the mixing with K0η8. This equation shows
that the mixing of Kπ with K0η8 is a function of both
the mixing parameter α and the eigenphase difference(
eiδC3 − eiδC2

)
(exactly like the elasticity parameter η in

two-channel mixing). If α is small, we write

M =




1
3


 eiδC1 + 2eiδC2

√
2
(
eiδC1 − eiδC2

)
0√

2
(
eiδC1 − eiδC2

)
2eiδC1 + eiδC2 0

0 0 3eiδC2




+(eiδC3−eiδC2)
3


 0 0 −√6α

0 0
√

3α

−√6α
√

3α 3







.

(71)
This form can be applied to QD parametrizations. From
(67), we have for Kπ decays (omitting CKM factors)




(
D

0 → K+π−
)

= T

(
eiδC1 + 2eiδC2

3

)
+ C

(
eiδC1 − eiδC2

3

)

+EeiδC2 − α
(
eiδC3 − eiδC2

)
3

(C − E) ,(
D

0 → K0π0
)

= 1√
2

(
T

(
2
(
eiδC1 − eiδC2

)
3

)
+ C

(
2eiδC1 + eiδC2

3

)

−EeiδC2 +
α
(
eiδC3 − eiδC2

)
3

(C − E) ,

)

(72)
which is to be compared with (69).

5.2.3 Other three-channel mixings

The forms (10, 70, · · · ) for the mixing matrix is valid for
the mixings in the sets A and D. For the mixings in B and
C, the MSU(3) matrix is

MSU(3) =
1
5

(73)


2eiδ27 + 3eiδ8 − 3√
2

(
eiδ27 − eiδ8

) √ 3
2

(
eiδ27 − eiδ8

)
− 3√

2

(
eiδ27 − eiδ8

) 1
2

(
7eiδ27 + 3eiδ8

) √
3

2

(
eiδ27 − eiδ8

)√
3
2

(
eiδ27 − eiδ8

) √
3

2

(
eiδ27 − eiδ8

) 1
2

(
9eiδ27 + eiδ8

)

 ,

which differs from (10) by some signs only. Note that these
signs are not SU(3) phase-convention dependent, since
phase conventions always disappear when calculating M -
matrices.

5.3 Six-channel mixings

SU(2) analysis of set of states G For the last group
of coupled states (G), we can make the following isospin
analysis:




{
KK

}
: I = 1{

KK
}

: I = 0
{η8η8} : I = 0
{ππ} : I = 2
{ππ} : I = 0{
π0η8

}
: I = 1




=




−
√

1
2

√
1
2 0 0 0 0√

1
2

√
1
2 0 0 0 0

0 0 1 0 0 0

0 0 0 −
√

1
3

√
2
3 0

0 0 0 −
√

2
3 −

√
1
3 0

0 0 0 0 0 1



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


1
2

(
eiδKK

0 +eiδKK
1

)
1
2

(
eiδKK

0 −eiδKK
1

)
0 0 0 0

1
2

(
eiδKK

0 −eiδKK
1

)
1
2

(
eiδKK

0 +eiδKK
1

)
0 0 0 0

0 0 eiδηη
0 0 0 0

0 0 0 1
3

(
eiδππ

2 +2eiδππ
0
) √

2
3

(
eiδππ

0 −eiδππ
2
)

0
0 0 0

√
2

3

(
eiδππ

0 −eiδππ
2
)

1
3

(
2eiδππ

2 +eiδππ
0
)

0
0 0 0 0 0 eiδπη

1




. (75)

×




{K−K+} : I = 1, 0{
K0K0

}
: I = 1, 0

{η8η8} : I = 0
{π+π−} : I = 2, 0{
π0π0

}
: I = 2, 0{

π0η8
}

: I = 1




. (74)

We obtain the already introduced SU(2) mixing matrix
(see Table 64): MSU(2) which equals (see (75) on top of
the page).

Most general mixing among the states of set G compat-
ible with isospin From SU(2), to go towards SU(3), we
must introduce an extra mixing between the two isospin
1 states (one mixing parameter α1) and extra mixings be-
tween the three isospin 0 states (three mixing parameters
α2, α3 and α4):

O(α1, α2, α3, α4) (Intermediate states) = (76)


1 0 0 0 0 0
0 x x 0 x 0
0 x x 0 x 0
0 0 0 1 0 0
0 x x 0 x 0
0 0 0 0 0 1







y 0 0 0 0 y

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
y 0 0 0 0 y







{
KK

}
: Isospin 1{

KK
}

: Isospin 0
{η8η8} : Isospin 0
{ππ} : Isospin 2
{ππ} : Isospin 0{
π0η8

}
: Isospin 1




,

with x the entries of a 3 by 3 orthogonal matrix (three
angles α2, α3, α4) and y the entries of a 2 by 2 orthogo-
nal matrix (one angle α1). By using O(α1, α2, α3, α4), we
can build the most general mixing Mgeneral(α1, α2, α3, α4)
among this six-state set compatible with isospin.

SU(3) analysis of set of states G Finally, we can find a
value for each of the four parameters α1, · · · , α4 such that
Mgeneral(α1, α2, α3, α4)→MSU(3) equals




7a
20+ 2b

5 + c
4 − a

20− b
5+ c

4
1√
2

(− 9a
20+ b

5+ c
4

)
− a

20− b
5+ c

4
7a
20+ 2b

5 + c
4

1√
2

(− 9a
20+ b

5+ c
4

)
1√
2

(− 9a
20+ b

5+ c
4

) 1√
2

(− 9a
20+ b

5+ c
4

) 27a
40 + b

5+ c
8

− a
20− b

5+ c
4 − a

20− b
5+ c

4
1√
2

( 3a
20− 2b

5 + c
4

)
1√
2

(− a
20− b

5+ c
4

) 1√
2

(− a
20 − b

5 + c
4

) 3a
40− b

5+ c
8√

3
5 (b−a) −

√
3

5 (b−a) 0

· · ·

· · ·

− a
20− b

5+ c
4

1√
2

(− a
20− b

5+ c
4

) √
3

5 (b−a)

− a
20− b

5+ c
4

1√
2

(− a
20− b

5+ c
4

) −√
3

5 (b−a)
1√
2

( 3a
20− 2b

5 + c
4

) 3a
40− b

5+ c
8 0

7a
20+ 2b

5 + c
4

1√
2

(− 13a
20 + 2b

5 + c
4

)
0

1√
2

(− 13a
20 + 2b

5 + c
4

) 27a
40 + b

5+ c
8 0

0 0 1
5 (2b+3a)




,

with




a = eiδ27 ,

b = eiδ8 ,

c = eiδ1 .

(77)

SU(2) specification in the SU(3) analysis In order to
introduce SU(3) breaking in the FSI, we can calculate a
form like (52) for this set of states. We obtain the follow-
ing matrix MSU(2 in 3) (see (78) on top of the next page)
with a = eiδ2

27 , b = eiδ1
27 , c = eiδ0

27 , d = eiδ1
8 , e =

eiδ0
8 , f = eiδ0

1 (the notation is δisospin
SU(3) rep.), where we

have distinguished SU(3) phases according to isospin. The
SU(3) limit can be obtained by identifying a = b = c,
d = e and the modified SU(2) limit by identifying b = d,
c = e = f .

Other possibilities We can of course also limit ourself to
some intermediate mixings. For example, forgetting states
containing η8, we can mix

{
KK

}
T=0 with {ππ}T=0 with

the orthogonal matrix:

O{KK,ππ} =




1 0 0 0
0 cos α 0 − sinα

0 0 1 0
0 sinα 0 cos α




×




−
√

1
2

√
1
2 0 0√

1
2

√
1
2 0 0

0 0 −
√

1
3

√
2
3

0 0 −
√

2
3 −

√
1
3




(79)

and build a mixing matrix M{KK,ππ} =
(
O{KK,ππ})t

M
{KK,ππ}
diag O{KK,ππ}, which can be used for example in

D decays:
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


b
5 + 3c

20 + 3d
10 + e

10 + f
4 − b

5 + 3c
20 − 3d

10 + e
10 + f

4
1√
2

(
− 9c

20 + e
5 + f

4

)
− b

5 + 3c
20 − 3d

10 + e
10 + f

4
b
5 + 3c

20 + 3d
10 + e

10 + f
4

1√
2

(
− 9c

20 + e
5 + f

4

)
1√
2

(
− 9c

20 + e
5 + f

4

)
1√
2

(
− 9c

20 + e
5 + f

4

)
27c
40 + e

5 + f
8

− c
20 − e

5 + f
4 − c

20 − e
5 + f

4
1√
2

(
3c
20 − 2e

5 + f
4

)
1√
2

(
− c

20 − e
5 + f

4

)
1√
2

(
− c

20 − e
5 + f

4

)
3c
40 − e

5 + f
8√

3
5 (d − b) −

√
3

5 (d − b) 0

· · ·

· · ·

− c
20 − e

5 + f
4

1√
2

(
− c

20 − e
5 + f

4

) √
3

5 (d − b)

− c
20 − e

5 + f
4

1√
2

(
− c

20 − e
5 + f

4

)
−

√
3

5 (d − b)
1√
2

(
3c
20 − 2e

5 + f
4

)
3c
40 − e

5 + f
8 0

a
3 + c

60 + 2e
5 + f

4
1√
2

(
− 2a

3 + c
60 + 2e

5 + f
4

)
0

1√
2

(
− 2a

3 + c
60 + 2e

5 + f
4

)
2a
3 + c

120 + e
5 + f

8 0
0 0 1

5 (2d + 3b) ,




(78)




D0 → K+K−

D0 → K0K0

D0 → π+π−

D0 → π0π0


 = M{KK,ππ}




D0 → {K+K−}
D0 →

{
K0K0

}
D0 → {π+π−}
D0 → {

π0π0
}


 .

(80)

5.3.1 Application to QD decompositions

All these matrices can now be applied on quark diagram
decompositions. For D decays, using a Cabibbo approxi-
mation (and omitting CKM):




D0 → K+K−

D0 → K0K0

D0 → η8η8

D0 → π+π−

D0 → π0π0

D0 → π0η8




= M




D0 → {K+K−} = −T − E

D0 →
{

K0K0
}

= 0

D0 → {η8η8} = 1√
2

(C − E)
D0 → {π+π−} = T + E

D0 → {
π0π0

}
= 1√

2
(−C + E)

D0 → {
π0η8

}
= 1√

3
(C − E)




. (81)

For B0 and Bs decays into these channels, the QD para-
metrizations of decay amplitudes are given in the appendix.

Example: D decays to KK. As is well-known, the ampli-
tudes for the decay D0 → K0K0 is identically zero under
SU(3). Here we can see that this decay is zero at the level
of bare amplitude. Of course, if we apply the SU(3) FSI
matrix, the full amplitude remains zero. Under SU(2), we
find as usual

(
D0 → K+K−

D0 → K0K0

)
=


− 1

2

(
eiδKK

0 + eiδKK
1

)
(T + E)

− 1
2

(
eiδKK

0 − eiδKK
1

)
(T + E)


 .

(82)
If we use the MSU(2 in 3) form (78), we find


D0 → K+K− =

−T

(
2(eiδ0

27 + eiδ1
27) + 3(eiδ0

8 + eiδ1
8 )

10

)

+C

(
(eiδ0

8 + eiδ1
8 )− (eiδ0

27 + eiδ1
27)

5

)
− E

(
eiδ0

8 + eiδ1
8

2

)
,

D0 → K0K0 =

−T

(
2(eiδ0

27 − eiδ1
27) + 3(eiδ0

8 − eiδ1
8 )

10

)

+C

(
(eiδ0

8 − eiδ1
8 )− (eiδ0

27 − eiδ1
27)

5

)
− E

(
eiδ0

8 − eiδ1
8

2

)
.

(83)
Here we can see that the non-zero D0 → K0K0 is gen-
erated by SU(3) breaking in the FSI phases. If we iden-
tify δT

27 = δT
8 = δKK

T , we recover the SU(2) limit (82)
and if we identify δ1

R = δ0
R = δR, we recover the SU(3)

limit
(
D0 → K0K0

)
= 0. Experimentally, the amplitude

for D0 → K0K0 is non-negligible compared to D0 →
K+K−; the SU(3) breaking is therefore quite important.
Note that this interpretation of the non-zero amplitude(
D0 → K0K0

)
given here is not new, but it shows the

simplicity of the proposed matrix method.

6 Conclusion

The main motivation of our work is to obtain a para-
metrization of B and D decays which can be used to ex-
tract some theoretically interesting quantities from exper-
imental measurements.

The first step towards this parametrization is the gen-
eralized Watson theorem W = S1/2Wb applied to a set
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of decay channels. This theorem shows that physical de-
cay amplitudes can be factorized into a bare part and
an FSI part. The model character of our procedure en-
ters precisely when identifying those bare amplitudes to
elementary processes free of FSI effect, this identification
being strictly equivalent to the elastic hypothesis (as soon
as the S-matrix is unitary). Elementary processes and FSI
effects can then be analysed separately. Quark diagrams
are used at the bare level, and this ensures that they are
well-defined in terms of elementary processes. For the FSI
part, we introduce unitary mixing matrices. Unitarity of
these mixing matrices is equivalent to probability conser-
vation among the set of decay channels, i.e. to elastic-
ity. The important point is that FSIs are treated at the
hadronic level, since our S-matrix was built from hadron
states. We have then shown how to build mixing matrices,
using a symmetry group or introducing selected mixings
among the hadron states.

The next step should be to simplify the parametriza-
tions obtained. Indeed, if we introduce FSI as some general
mixings, we introduce many mixing parameters and many
strong phases, and since we have only a limited number of
possible decays, we have to reduce the number of param-
eters. Dynamical considerations can lead to the neglect of
some quark diagrams (usually, A and PA), and also to the
neglect of some mixings among the possible final states.
As we have repeatedly emphasized, it is also possible to
use flavor symmetry to fix some mixings. Finally, Regge
phenomenology may be useful to calculate some strong
phases.

The final step is of course comparison with experi-
mental data. Within our model framework, one can build
simple parametrizations. Whether the various hypothe-
ses, emphasized in this work, are valid or not can then
be tested, especially the elasticity of FSI, and the limited
extend of the set of rescattering channels. For example,
in B decays, treating FSI as elastic under SU(2) may be
a sufficient approximation. But it could also happen that
mixing with η, η′ or charmed meson states are impor-
tant (the present approach is straightforwardly extended
to these mixings), or even mixings with multibody sates.
Finally, the present elastic approach for FSI could be inap-
propriate. However, in that case, it will have shown where
and how severely inelasticity comes into play.

In our model framework, all these considerations are
possible because of the factorization of physical ampli-
tudes and because of the identification of quark diagrams
with elementary processes. In conclusion, the framework
we propose may lead to a simplified parametrization (us-
ing relevant symmetry and dynamical arguments) that can
be used to analyze experimental data.

Acknowledgements. Many thanks are due to J.-M. Gérard, J.
Pestieau and J. Weyers for the numerous discussions, com-
ments and encouragements. This work is supported in part by
the Fonds National de la Recherche Scientifique (Belgique).
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Appendices

1 SU(3) analysis of B
and D decay amplitudes

Let us describe briefly the SU(3) analysis of decay am-
plitudes (see [1,2]). We work with the conventions that
(u, d, s) transform as 3 and (s, d,−u) transform as 3.

1.1 Initial states

For the decaying mesons, we are considering
(
B+, B0, Bs

)
and (D

0
, D−, D−

s ) because they both transform as 3 under
SU(3).

1.2 Weak hamiltonians

We give here the weak hamiltonians at lowest order in the
electroweak interaction for ∆C = 0 B decays and for D de-
cays. These hamiltonians are written as a Fermi current–
current interaction, and the V–A structure is omitted.

(i) For B decays The weak hamiltonian for ∆C=0 tran-
sitions is at the lowest order{

H∆S=0
W = V ∗

ubVudbu.ud + V ∗
cbVcdbc.cd + V ∗

tbVtdbt.td,

H∆S=1
W = V ∗

ubVusbu.us + V ∗
cbVcsbc.cs + V ∗

tbVtsbt.ts.

(84)
This is written in terms of SU(3) representations as

H∆S=0
W =




V ∗
ubVud

(√
8
∣∣15, 3

2 , 1
2 ,− 1

3

〉
+
∣∣15, 1

2 , 1
2 ,− 1

3

〉
+
∣∣6, 1

2 , 1
2 ,− 1

3

〉
+
∣∣3, 1

2 , 1
2 ,− 1

3

〉)
V ∗

cbVcd

∣∣3c,
1
2 , 1

2 ,− 1
3

〉
+ V ∗

tbVtd

∣∣3t,
1
2 , 1

2 ,− 1
3

〉
,

H∆S=1
W =




+V ∗
ubVus

(√
6
∣∣15, 1, 0, 2

3

〉
+
√

3
∣∣15, 0, 0, 2

3

〉
− ∣∣6, 1, 0, 2

3

〉
+
∣∣3, 0, 0, 2

3

〉)
+V ∗

cbVcs

∣∣3c, 0, 0, 2
3

〉
+ V ∗

tbVts

∣∣3t, 0, 0, 2
3

〉
.

(85)

(ii) For D decays We have


H∆S=−1
W = V ∗

cdVuscd.su,

H∆S=0
W = V ∗

cdVudcd.du + V ∗
csVuscs.su + V ∗

cbVubcb.bu,

H∆S=+1
W = V ∗

csVudcs.du,

(86)
and in representations

H∆S=−1
W

= V ∗
cdVus

(
−
√

12
∣∣15, 1, 0,− 4

3

〉
+
√

2
∣∣6, 0, 0,− 4

3

〉)
,

H∆S=0
W

=




V ∗
cdVud

(−√8
∣∣15, 3

2 , −1
2 , −1

3

〉
+
∣∣15, 1

2 , −1
2 , −1

3

〉
+
∣∣6, 1

2 , −1
2 , −1

3

〉
+
∣∣3, 1

2 , −1
2 , −1

3

〉)
+V ∗

csVus

(−√9
∣∣15, 1

2 , −1
2 , −1

3

〉− ∣∣6, 1
2 , −1

2 , −1
3

〉
+
∣∣3, 1

2 , −1
2 , −1

3

〉)
+ V ∗

cbVub

∣∣3b,
1
2 , −1

2 , −1
3

〉
,

H∆S=+1
W

= V ∗
csVud

(
−
√

12
∣∣15, 1,−1, 2

3

〉−√2
∣∣6, 1,−1, 2

3

〉)
. (87)

With the Cabibbo approximation (V ∗
cdVud = −V ∗

csVus =
λ, V ∗

cbVub = 0):

H∆S=0
W = λ

(
−
√

8
∣∣15, 3

2 , −1
2 , −1

3

〉
+ 4

∣∣15, 1
2 , −1

2 , −1
3

〉
+2
∣∣6, 1

2 , −1
2 , −1

3

〉)
. (88)

1.3 Final states

The pseudoscalars transform as the octet 8; therefore all
the final states of two charmless pseudoscalars can be ob-
tained from the symmetric part (Bose statistics) of the
tensor product (8 ⊗ 8)S = 27, 8S, 1. Note that under our
conventions, the pseudoscalar octet is(

K+, K0, π+,−π0,−π−,−η8,K0,−K−
)

. (89)

1.4 Decay amplitudes

The complete set of decays can be parametrized with
SU(3) amplitudes using the standard Wigner–Eckart the-
orem. The results are well known (see [2–11]), but we give
them again for convenience, and because we have renor-
malized the SU(3) amplitudes coherently in B and D de-
cays. This implies that we have a nice correspondence be-
tween SU(3) amplitudes and quark diagrams, valid in both
B and D decays. The following table summarizes the no-
tations for the matrix elements (see (90) on top of the next
page) Of course, SU(3) amplitudes have different values in
B and D decays, but the SU(3) structure is similar. For D
decays, we can use the Cabibbo approximation for CKM,
under which only three SU(3) amplitudes survive: A27, A8

and B8.

Remark: The procedure just described can be applied to
find SU(3) decompositions of bare or of full decay ampli-
tudes in terms of bare or full SU(3) amplitudes respec-
tively, since FSIs proceed only by strong interactions (to
translate from full to bare, just replace A27 by A27

b and
so on, see (6) and (8)). If we work at the level of full am-
plitudes under SU(3), this means that we are imposing
SU(3) invariance on FSI.

2 Quark diagram analysis

The decompositions of bare decay amplitudes in terms of
QDs are calculated as usual:

(i) For a given initial state, and a given type of
QD, write all the possible flavor “final” states (note
that since we are working at the bare level, “final”
means here intermediate).
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SU(3) Amplitudes 3 ⊗ 15 → 8, 27 3 ⊗ 6 → 8 3 ⊗ 3 → 1, 8 3 ⊗ 3q → 1, 8
Initial = 3 A27 =

〈
27
∣∣15
∣∣ 3〉 B8 = 〈8 |6| 3〉 C8 =

〈
8
∣∣3∣∣ 3〉 C8q =

〈
8
∣∣3q

∣∣ 3〉
Final = 27,8,1 A8 =

〈
8
∣∣15
∣∣ 3〉 C1 =

〈
1
∣∣3∣∣ 3〉 C1q =

〈
1
∣∣3q

∣∣ 3〉 (90)

It is at this step that we ensure SU(3) symmetry.
By identifying diagrams which correspond under
the exchange of u, d or s (and u, d, s), we are left
with the six diagrams T , C, E, A, P , PA, and some
P q and PAq (proceeding via a heavy quark q in the
loop). We can also implement SU(2) by considering
exchange of u, d (and u, d), but we are left with a
huge number of different diagrams.
(ii) Contract these flavor “final” states with every
hadron state according to the conventions

K+ = us,

K0 = ds,

K0 = su,

K− = sd,

π+ = ud,

π− = du,
(91)

π0 = 1√
2

(
uu− dd

)
, η8 = 1√

6

(
uu + dd− 2ss

)
.

This is necessary in order to render QD decomposi-
tions compatible with SU(3) decompositions (with
the phase conventions (89)).
(ii) If the “final” state contains identical hadrons,
divide by 21/2 . This is compulsory in order to com-
pare with SU(3) amplitudes where final states are
symmetric under exchange (Bose statistics). This
implies that when we are calculating decay widths
for identical-particle “final” states, we should not
divide by 2.
(iv) Finally, add the required CKM elements.

Note that even if the analysis is the same in B and D,
the specific values of the QDs are of course different for B
and D decays.

2.1 Link between SU(3) bare amplitudes
and QD amplitudes

Since we have two parametrizations: QD and SU(3) am-
plitudes (bare), we can find relations between them. The
expressions of SU(3) amplitudes in terms of QDs are



A27
b = − 1

10 (T + C) ,

A8
b = 1

40 (T + C) + 1
8 (E + A) ,

B8
b = 1

4 (−T + C − E + A) ,

C8
b = 1

8 (−3T + C + E − 3A)− P,

C1
b = 1

12 (3T − C) + 2
3 (E + P ) + PA.

(92)

These relations are valid for B and D decays. There are
also relations linking 3q with P q and PAq (q = c, b or t):{

C8q
b = −P q,

C1q
b = 2

3P q + PAq.
(93)

Since there are more QD amplitudes than SU(3) am-
plitudes, there is a combination of QDs that never appear
in decay amplitudes. This relation is

T − C − E + A− P + PA = 0. (94)

This relation is to be interpreted as a relation for the corre-
sponding coefficients in decay amplitude decompositions.
For example,

B+ → {
K+π0} =

1√
2

(T + C + A + P ) ,

and the relation is verified:

1√
2
− 1√

2
+

1√
2
− 1√

2
= 0.

Due to this relation, the expressions of QDs in terms
of SU(3) amplitudes are not uniquely defined. Anyway,
one can use the following simple set of relations to trans-
late QDs decompositions into SU(3) amplitude decompo-
sitions:



T = −6A27
b ,

C = −4A27
b ,

E = 2A27
b + 4A8

b − 2B8
b ,

A = 4A8
b + 2B8

b ,

P = 2A27
b −A8

b −B8
b − C8

b ,

PA = − 3
2A27

b − 2A8
b + 2B8

b + 2
3C8

b + C1
b;

(95)

{
P q = −C8q

b ,

PAq = 2
3C8q

b + C1q
b .

(96)

However, it should be clear that care is needed when deal-
ing with these relations.
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3 B decays decompositions

∆S = 0 V ∗
ubVud V ∗

ubVudC8 V ∗
ubVudC1

B → PP Prefactors +V ∗
cbVcdC8c +V ∗

cbVcdC1c

A27 A8 B8 +V ∗
tbVtdC8t +V ∗

tbVtdC1t

K0η8
1√
6

−6 1 1 1 0
BS K0π0 1√

2
−6 1 1 1 0

K−π+ 1 −4 −1 −1 −1 0

π+η8
1√
6

−6 6 2 −2 0
B+ K0K+ 1 2 3 1 −1 0

π+π0 1√
2

−10 0 0 0 0

K+K− 1 1/2 2 0 2/3 1
K0K0 1 1/2 −3 1 −1/3 1

B0 η8η8
1√
2

−3/2 −1 1 1/3 1
π0η8

1√
3

0 5 −1 1 0
π+π− 1 −7/2 1 −1 −1/3 1
π0π0 1√

2
13/2 1 −1 −1/3 1

∆S = 1 V ∗
ubVus V ∗

ubVusC
8 V ∗

ubVusC
1

B → PP Prefactors +V ∗
cbVcsC

8c +V ∗
cbVcsC

1c

A27 A8 B8 +V ∗
tbVtsC

8t +V ∗
tbVtsC

1t

K0η8
1√
6

−6 1 1 1 0
B0 K0π0 1√

2
−6 1 1 1 0

K+π− 1 −4 −1 −1 −1 0

K+η8
1√
6

−12 −3 −1 1 0
B+ K+π0 1√

2
−8 3 1 −1 0

K0π+ 1 2 3 1 −1 0

K+K− 1 −7/2 1 −1 −1/3 1
K0K0 1 1/2 −3 1 −1/3 1

BS η8η8
1√
2

9/2 −2 0 −2/3 1
π0η8

1√
3

6 4 −2 0 0
π+π− 1 1/2 2 0 2/3 1
π0π0 1√

2
1/2 2 0 2/3 1

∆S = 0 V ∗
ubVud V ∗

ubVudP V ∗
ubVudPA

B → PP Prefactors +V ∗
cbVcdP c +V ∗

cbVcdPAc

T C E A +V ∗
tbVtdP t +V ∗

tbVtdPAt

K0η8
1√
6

0 1 0 0 −1 0
BS K0π0 1√

2
0 1 0 0 −1 0

K−π+ 1 1 0 0 0 1 0

π+η8
1√
6

1 1 0 2 2 0
B+ K0K+ 1 0 0 0 1 1 0

π+π0 1√
2

1 1 0 0 0 0

K+K− 1 0 0 1 0 0 1
K0K0 1 0 0 0 0 1 1

B0 η8η8
1√
2

0 1/3 1/3 0 1/3 1
π0η8

1√
3

0 0 1 0 −1 0
π+π− 1 1 0 1 0 1 1
π0π0 1√

2
0 −1 1 0 1 1
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∆S = 1 V ∗
ubVus V ∗

ubVusP V ∗
ubVusPA

B → PP Prefactors +V ∗
ubVusP

c +V ∗
cbVcsPAc

T C E A +V ∗
tbVtsP

t +V ∗
tbVtsPAt

K0η8
1√
6

0 1 0 0 −1 0
B0 K0π0 1√

2
0 1 0 0 −1 0

K+π− 1 1 0 0 0 1 0

K+η8
1√
6

1 1 0 −1 −1 0
B+ K+π0 1√

2
1 1 0 1 1 0

K0π+ 1 0 0 0 1 1 0

K+K− 1 1 0 1 0 1 1
K0K0 1 0 0 0 0 1 1

BS η8η8
1√
2

0 −2/3 1/3 0 4/3 1
π0η8

1√
3

0 −1 1 0 0 0
π+π− 1 0 0 1 0 0 1
π0π0 1√

2
0 0 1 0 0 1

4 D decays decompositions

(Cabibbo approximation)

∆S = 0 Prefactors λ λ

D → PP A27 A8 B8 T C E A

K0K− 1 6 4 2 −1 0 0 1
D− π−η8

1√
6

−18 8 4 1 3 0 2
π−π0 1√

2
10 0 0 −1 −1 0 0

K−η8
1√
6

−24 4 2 2 3 0 1
D−

S K−π0 1√
2

4 −4 −2 0 −1 0 −1
K0π− 1 −6 −4 −2 1 0 0 −1

K+K− 1 4 −4 2 −1 0 −1 0
K0K0 1 0 0 0 0 0 0 0

D0 η8η8
1√
2

−6 −4 2 0 1 −1 0
π0η8

1√
3

−6 −4 2 0 1 −1 0
π+π− 1 −4 4 −2 1 0 1 0
π0π0 1√

2
6 4 −2 0 −1 1 0

∆S = −1 Prefactors V ∗
cdVus V ∗

cdVus

D → PP A27 A8 B8 T C E A

K−η8
1√
6

−6 −4 −2 1 0 0 −1
D− K−π0 1√

2
6 4 2 −1 0 0 1

K0π− 1 −4 4 2 0 1 0 1

D−
S K0K− 1 −10 0 0 1 1 0 0

K0η8
1√
6

−6 −4 2 0 1 −1 0
D0 K0π0 1√

2
−6 −4 2 0 1 −1 0

K−π+ 1 −4 4 −2 1 0 1 0
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∆S = +1 Prefactors V ∗
csVud V ∗

csVud

D → PP A27 A8 B8 T C E A

K0K− 1 −4 4 2 0 1 0 1
D−

S π−η8
1√
6

12 8 4 −2 0 0 2
π−π0 1√

2
0 0 0 0 0 0 0

D− K0π− 1 −10 0 0 1 1 0 0

K0η8
1√
6

−6 −4 2 0 1 −1 0
D0 K0π0 1√

2
−6 −4 2 0 1 −1 0

K+π− 1 −4 4 −2 1 0 1 0

5 Demonstration
of the generalized Watson theorem

The S-matrix is given by(
1 iW t

1

iCP (W1) ≡ iW2 S

)
. (97)

Unitarity implies, in the lowest order in electroweak inter-
actions that

S†S = SS† = 1⇐⇒




S†S = SS† = 1
W1 = SW ∗

2

W2 = SW ∗
1

⇐⇒




S unitary,

(W1 + W2) = S (W1 + W2)
∗
,

(W1 −W2) = −S (W1 −W2)
∗
.

(98)

Since S is symmetric and unitary, there is a real orthogo-
nal transformation which diagonalizes it:

S = OtSdiagO, (99)

with, since S is unitary, a diagonal form like

Sdiag =




e2iδ1 0 · · · 0
0 e2iδ2 · · · 0
...

...
. . .

...
0 0 · · · e2iδn


 . (100)

Multiplying (98) by O:{
O (W1 + W2) = Sdiag (O (W1 + W2))

∗
,

O (W1 −W2) = −Sdiag (O (W1 −W2))
∗
,

(101)

or explicitly, in terms of components:{
[O (W1 + W2)]α = e2iδα [(O (W1 + W2))]

∗
α ,

[O (W1 −W2)]α = −e2iδα [(O (W1 −W2))]
∗
α .

(102)

This implies that each [O (W1 + W2)]α is a complex num-
ber, with phase δα (and similarly for [O (W1 −W2)]α ):{

[O (W1 + W2)]α ≡ 2eiδα [R]α ,

[O (W1 −W2)]α ≡ 2ieiδα [I]α .
(103)

with R and I real (the factor 2 is unimportant). Solving
for OW : {

[OW1]α = eiδα [R + iI]α ,

[OW2]α = eiδα [R− iI]α .
(104)

This is the generalized Watson theorem.

Bare amplitudes The main point is to consider [R± iI]
as weak amplitudes without final-state interactions, i.e. as
bare amplitudes:{

[R + iI]α = [OW1,b]α ,

[R− iI]α = [OW2,b]α .
(105)

So we see that W1,b and its CP conjugate W2,b are com-
plex conjugate, as they should for weak amplitudes with-
out FSI. In doing this, we put all the FSI effects in the
phases, and therefore the norms are not modified. Express-
ing the full amplitudes in terms of these bare ones (see (
105) and (104)), we get{

[OW1]α = eiδα [OW1,b]α
[OW2]α = eiδα [OW2,b]α

⇔
{

OW1 =
√

SdiagOW1,b,

OW2 =
√

SdiagOW2,b;
(106)

Wi =
√

SWi,b, (107)

where we identify the square root as√
S = Ot

√
SdiagO. (108)

We have thus demonstrated the form (14), which is the
generalized Watson theorem rewritten using bare ampli-
tude identifications.

In summary, Watson’s theorem allows us to extract
from the full weak amplitudes the hadronic FSI part, leav-
ing real bare amplitudes. We can say that we have unita-
rized weak bare decay amplitudes, since with the adjunc-
tion of the strong phases, the full S-matrix is unitary. We
can also say that we have renormalized the weak bare am-
plitudes by S1/2 , i.e. the effect of FSI factorize.

5.1 Restriction on mixings

Neglecting some mixings, we can impose a block-diagonal
form for S:
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
 1 iW t

1 iZt
1

iW2 S1 0
iZ2 0 S2


 . (109)

For each decoupled part, we can repeat the whole analysis.
Indeed, unitarity implies


S†
1S1 = S1S

†
1 = 1,

W1 = S1W
∗
2 ,

W2 = S1W
∗
1 ,

and




S†
2S2 = S2S

†
2 = 1,

Z1 = S2Z
∗
2 ,

Z2 = S2Z
∗
1 ,

(110)
and the remaining discussion is straightforward.

The probability conservation allows a characterization
of this approximation. It is now expressed, if S1 is n1×n1
and S2 is n2 × n2 with n = n1 + n2:

n∑
i=1

‖(B → xi)‖2 =
n∑

i=1

‖(B → {xi})‖2

→




n1∑
i=1

‖(B → xi)‖2 =
n1∑
i=1

‖(B → {xi})‖2 ,

n∑
i=n1

‖(B → xi)‖2 =
n∑

i=n1

‖(B → {xi})‖2 .

(111)

It remains to be seen in each case wether this is an appro-
priate restriction or not.

5.2 Mixing parameters

The most general mixings will be specified by a general
orthogonal transformation O on Mdiag. The determinant
of this matrix can be ±1, but we can restrict our attention
to orthogonal matrices of determinant +1, and introduce
a diagonal matrix P with diagonal element ±1. This P
matrix will always disappear when calculating M since
M = OtPMdiagPO = OtMdiagO.

For example, a general two-channel mixing can be de-
scribed from

O =

(
cos α − sinα

sinα cos α

)
and M = OtMdiagO, (112)

where α is a mixing parameter. For a three-channel mix-
ing, we will need tree mixing parameters (Euler’s angles)
and so on.

5.3 M -matrix properties

Because they were built as real orthogonal transforma-
tions on diagonal unitary matrices, the M -matrices have
a number of properties.

(i) They are symmetric and unitary.
(ii) The nth power is trivial: just multiply all phases
by n. This is also valid for n rational (see (108)).
(iii) When all the phases are equal to δ, M is simply
eiδ1 since Ot1O = 1. In other words, when all the
eigenphases are equal, mixings disappear.

(iv) Finally, write Mdiag as

Mdiag = eiδ11+
(
eiδ2 − eiδ1

)



0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .




+
(
eiδ3 − eiδ1

)



0 0 0 · · ·
0 0 0 · · ·
0 0 1 · · ·
...

...
...

. . .


+ · · · (113)

and apply the orthogonal transformation. In this
way, we have decomposed M into a sum of numer-
ical matrices, with phase differences as coefficients:

M = eiδ11+
n∑

i=2

(
eiδi − eiδ1

)
Ai

= eiδ1

(
1+

n∑
i=2

[(
ei(δi−δ1) − 1

)
Ai

])
, (114)

with AiAj = δijAi. We can, of course, factor an-
other phase than eiδ1 . These forms can be useful
phenomenologically.

6 Passage from a mixing parameter
formulation towards an elasticity-parameter
formulation.

The form for the S-matrix in terms of elasticity parame-
ters are built in the following way.

Define the base transformations as∣∣∣−→C〉 = O(α)
∣∣∣−→T 〉 = O(α)OSU(2)

∣∣∣−→X〉 = O(β)
∣∣∣−→X〉 ,

(115)
with

O(γ = α, β) =

(
cos γ − sin γ

sin γ cos γ

)
.

From this, we can directly write the link between the
Seigen, Sisospin and Sphysical:{

Sisospin(δ1, δ2, α) = Ot(α)SeigenO(α),
Sphysical(δ1, δ2, β) = Ot(β)SeigenO(β),

(116)

and Sphysical = Ot
SU(2)SisospinOSU(2), where we have ex-

plicitly written the parameters: the eigenphases and the
mixing parameters.

In these last expressions, we will change the parame-
ters from: {

δ1, δ2, α→ w1, w2, ηw,

δ1, δ2, β → α1, α2, η.
(117)

The elasticity parameters are defined in terms of eigen-
phases and mixing parameters as
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
 ηw =

√
1− 4ε2

w sin2(δ2 − δ1); εw = cos α sinα,

η =
√

1− 4ε2 sin2(δ2 − δ1); ε = cos β sinβ.

(118)
For the phases, we have expressions like{

2α1 = arg
(
cos2 βe2iδ1 + sin2 βe2iδ2

)
,

2α2 = arg
(
sin2 βe2iδ1 + cos2 βe2iδ2

)
,

(119)

and similarly for w1, w2 in Sisospin.
Finally, the different limits for the passage δ1, δ2, β ←→

α1, α2, η are{
β = 0⇒ η = 1, α1 = δ1, α2 = δ2;
δ2 = δ1 ⇒ α1 = α2, η = 0.

(120)

We can also characterize the maximal mixing: The limit
α1 = α2, η 6= 0 can be obtained with β = 45◦; this gives
the smallest value for η for a given δ2−δ1, i.e. η = cos(δ2−
δ1).
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